Classification of agricultural priority and reserved areas in Brandenburg under consideration of bio-economic climate simulations

Authors

DOI:

https://doi.org/10.14512/rur.2247

Keywords:

Climate resilient agriculture, spatial planning, regional planning, economic resilience, bioeconomic analysis, peatland conservation

Abstract

Ensuring a crisis-proof food supply has become a key political issue. In Germany, official spatial planning allows the use of priority and reserved areas to secure land for agricultural use and regional food supply. The focus should be particularly on climate-resilient areas that also have a stable yield potential in the future. This paper supplements widely used, static approaches for determining priority and reserved areas with a dynamic bio-economic analysis that takes future climate scenarios into account. The results for the German federal state of Brandenburg show a high area equivalence between the static and dynamic approaches. In the case of data gaps, for example, static approaches such as soil quality indices can serve as an adequate proxy for future yield potentials. However, not all climate-robust areas can be classified as potential reserved or priority areas. Furthermore, areas that show low yield potential under future conditions are not released for other land uses. Feedback from stakeholders involved in the study showed that the use of the dynamic approach and a target value using the results of a foodshed model lead to broad acceptance. The method developed here can make a valuable contribution to climate change adaptation in spatial planning instruments.

Downloads

Download data is not yet available.

References

Andrews, T.; Gregory, J.M.; Webb, M.J.; Taylor, K.E. (2012): Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. In: Geophysical Research Letters 39, 9. https://doi.org/10.1029/2012GL051607

BMUV – Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (2022): Nationale Moorschutzstrategie. Berlin.

Bundesregierung (2023): Mehr Windenergie für Deutschland. https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/wind-an-land-gesetz-2052764 (05.06.2024).

Enders, A.; Vianna, M.; Gaiser, T.; Krauss, G.; Webber, H.; Srivastava, A.K.; Seidel, S.J.; Tewes, A.; Rezaei, E.E.; Ewert, F. (2023): SIMPLACE – a versatile modelling and simulation framework for sustainable crops and agroecosystems. In: in silico Plants 5, 1, diad006. https://doi.org/10.1093/insilicoplants/diad006

Franck, E.; Peithmann, O. (2010): Regionalplanung und Klimaanpassung in Niedersachsen. Hannover. = E‑Paper der ARL 9.

Gavrilov, M.B.; An, W.; Xu, C.; Radaković, M.G.; Hao, Q.; Yang, F.; Guo, Z.; Perić, Z.; Gavrilov, G.; Marković, S.B. (2019): Independent Aridity and Drought Pieces of Evidence Based on Meteorological Data and Tree Ring Data in Southeast Banat, Vojvodina, Serbia. In: Atmosphere 10, 10, 586. https://doi.org/10.3390/atmos10100586

Hanff, H.; Lau, H. (2021): Datensammlung Land Brandenburg für die betriebswirtschaftliche Bewertung landwirtschaftlicher Produktionsverfahren im Land Brandenburg. Potsdam.

Jacoby, C. (2013): Das Modellvorhaben der Raumordnung (MORO) „Klima NEU“ im Landkreis Neumarkt in der Oberpfalz: Strategien der Regionalentwicklung zum Klimawandel. In: Kufeld, W. (Hrsg.): Klimawandel und Nutzung von regenerativen Energien als Herausforderungen für die Raumordnung. Hannover, 183–206. = Arbeitsberichte der ARL 7.

Janssen, S.; van Ittersum, M.K. (2007): Assessing farm innovations and responses to policies: A review of bio-economic farm models. In: Agricultural Systems 94, 3, 622–636. https://doi.org/10.1016/j.agsy.2007.03.001

Kersebaum, K.C. (2011): Special features of the HERMES model and additional procedures for parameterization, calibration, validation and applications. In: Ahuja, L.R.; Ma, L. (eds.): Methods of Introducing System Models into Agricultural Research. Madison. 65–94. https://doi.org/10.2134/advagricsystmodel2.c2

Kersebaum, K.C.; Nendel, C. (2014): Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions. In: European Journal of Agronomy 52, A, 22–32. https://doi.org/10.1016/j.eja.2013.04.005

Kersebaum, K.C.; Wallor, E.; Lorenz, K.; Beaudoin, N.; Constantin, J.; Wendroth, O. (2019): Modeling Cropping Systems with HERMES-Model Capability, Deficits and Data Requirements. In: Wendroth, O.; Lascano, R.J.; Ma, L. (eds.): Bridging Among Disciplines by Synthesizing Soil and Plant Processes. Madison, 103–126.

KTBL – Kuratorium für Technik und Bauwesen in der Landwirtschaft (2022): Betriebsplanung Landwirtschaft 2022/23: Daten für die Betriebsplanung in der Landwirtschaft. Darmstadt.

Kuhn, T.; Enders, A.; Gaiser, T.; Schäfer, D.; Srivastava, A.K.; Britz, W. (2020): Coupling crop and bio-economic farm modelling to evaluate the revised fertilization regulations in Germany. In: Agricultural Systems 177, 102687. https://doi.org/10.1016/j.agsy.2019.102687

Lin, B.B. (2011): Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. In: BioScience 61, 3, 183–193. https://doi.org/10.1525/bio.2011.61.3.4

Martinsen M.; Knothe S.; Thur P. (2014): Abschlussdokumentation vom INKA BB-Teilprojekt 4: „Klimaadaptierte Regionalplanung in den Regionen Uckermark-Barnim und Lausitz-Spreewald“. Cottbus. https://www.region-lausitz-spreewald.de/de/projekte/projekte-in-der-region2.html (19.06.2024).

Meuwissen, M.P.M.; Feindt, P.H.; Spiegel, A.; Termeer, C.J.A.M.; Mathijs, E.; de Mey, Y.; Finger, R.; Balmann, A.; Wauters, E.; Urquhart, J.; Vigani, M.; Zawalinska, K.; Herrera, H.; Nicholas-Davies, P.; Hansson, H.; Paas, W.; Slijper, T.; Coopmans, I.; Vroege, W.; Ciechomska, A.; Accatino, F.; Kopainsky, B.; Poortvliet, P.M.; Candel, J.J.L.; Maye, D.; Severini, S.; Senni, S.; Soriano, B.; Lagerkvist, C.-J.; Peneva, M.; Gavrilescu, C.; Reidsma, P. (2019): A framework to assess the resilience of farming systems. In: Agricultural Systems 176, 102656. https://doi.org/10.1016/j.agsy.2019.102656

Mitschang, S. (ed.) (2021): Klimaschutz und Klimaanpassung in der Regional- und Bauleitplanung. Fach- und Rechtsfragen. Baden-Baden. = Berliner Schriften zur Stadt- und Regionalplanung 40. https://doi.org/10.5771/9783748924180

Regionale Planungsgemeinschaft Havelland-Fläming (2021): Regionalplan Havelland-Fläming 3.0. Kapitel 2.4 Landwirtschaftliche Bodennutzung. Planungskonzept Vorranggebiete für die Landwirtschaft, September 2021. Teltow.

Regionaler Planungsverband Leipzig-Westsachsen (2020): Regionalplan Leipzig-Westsachsen. Leipzig.

Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P. (2018): Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes – A review. In: Field Crops Research 221, 142–156. https://doi.org/10.1016/j.fcr.2018.02.023

Rose, A.; Liao, S.-Y. (2005): Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions. In: Journal of Regional Science 45, 1, 75–112. https://doi.org/10.1111/j.0022-4146.2005.00365.x

Scholich, D. (2018): Vorranggebiet, Vorbehaltsgebiet und Eignungsgebiet. In: ARL – Akademie für Raumforschung und Landesplanung (ed.): Handwörterbuch der Stadt- und Regionalentwicklung. Hannover, 2841–2855.

Scholz, E. (2015): Die naturräumliche Gliederung Brandenburgs. Berlin. https://doi.org/10.17169/refubium-19098

Schwertmann, U.; Vogl, W.; Kainz, M. (1987): Bodenerosion durch Wasser – Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. Stuttgart.

Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. (2014): Adverse weather conditions for European wheat production will become more frequent with climate change. In: Nature Climate Change 4, 7, 637–643. https://doi.org/10.1038/nclimate2242

von Czettritz, H.J.; Hosseini-Yekani, S.-A.; Schuler, J.; Kersebaum, K.-C.; Zander, P. (2023): Adapting Cropping Patterns to Climate Change: Risk Management Effectiveness of Diversification and Irrigation in Brandenburg (Germany). In: agriculture 13, 9, 1740. https://doi.org/10.3390/agriculture13091740

Wagner, S. (2021): Klimaschutz und Klimaanpassung in der Regionalplanung – Instrumente, Möglichkeiten und Grenzen. In: Mitschang, S. (ed.): Klimaschutz und Klimaanpassung in der Regional- und Bauleitplanung. Fach- und Rechtsfragen. Baden-Baden, 9–38. = Berliner Schriften zur Stadt- und Regionalplanung 40. https://doi.org/10.5771/9783748924180

Zasada, I.; Schmutz, U.; Wascher, D.; Kneafsey, M.; Corsi, S.; Mazzocchi, C.; Monaco, F.; Boyce, P.; Doernberg, A.; Sali, G.; Piorr, A. (2019): Food beyond the city – Analysing foodsheds and self-sufficiency for different food system scenarios in European metropolitan regions. In: City, Culture and Society 16, 25–35. https://doi.org/10.1016/j.ccs.2017.06.002

Zaspel, B. (2014): Energiewende in Deutschland: Herausforderungen für die Landesplanung. In: Küpper, P.; Levin-Keitel, M.; Maus, F.; Müller, P.; Reimann, S.; Sondermann, M.; Stock, K.; Wiegand, T. (eds.): Raumentwicklung 3.0 – Gemeinsam die Zukunft der räumlichen Planung gestalten. Hannover, 106–122. = Arbeitsberichte der ARL 8.

Published

Issue publication date 2024-08-30 (version 2)
Published online first 2024-08-21 (version 1)

Versions

Issue

Section

Research Article

How to Cite

1.
von Czettritz HJ, Uthes S, Schuler J, Steinhäußer R, Kersebaum K-C, Zander P. Classification of agricultural priority and reserved areas in Brandenburg under consideration of bio-economic climate simulations. RuR [Internet]. 2024 Aug. 30 [cited 2024 Oct. 12];82(4):338-51. Available from: https://rur.oekom.de/index.php/rur/article/view/2247

Share