A Settlement-Structural Typology of Residential Environments for North Rhine-Westphalia, Germany. Methodology, Characterisation and Application Authors David J. Hölzel Technische Universität Dortmund https://orcid.org/0000-0002-2338-2094 DOI: https://doi.org/10.14512/rur.3076 Keywords: Settlement structure, Residential Environments, Indicators, Monitoring, Spatial Typology, Elections, Children Abstract Typologies of urban form facilitate the understanding of and communication on complex spatial issues in the context of spatial planning, research and policy. Currently, in Germany they are primarily available at federal and regional level, while small-scale typologies of urban form of comparable generalizability are scarce which complicates communication about spatial and space-related issues. Residential environments are an important context of everyday activity spaces and therefore, a typology of residential environments helps improve the understanding of the nexus between space and society. This paper aims to derive a typology of residential environments based on a high number of randomly generated locations in North Rhine-Westphalia and open access data on urban form. By linking the typology to the BBSR-“Stadt- und Gemeindetypen” and the RegioStaR typologies, this paper shows how the typology of residential environments may be linked to large-scale typologies. The paper further demonstrates its applicability in two very different subject areas by performing exemplary comparisons of the contextual factors of children’s mobility in Dortmund and political voting behaviour in Aachen, Germany. The typology is made freely available for further use in other studies. Downloads Download data is not yet available. References AdV – Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (2011): Katalog der tatsächlichen Nutzungsarten im Liegenschaftskataster und ihrer Begriffsbestimmungen. https://www.adv-online.de/AdV-Produkte/Liegenschaftskataster/Download/ (16.09.2024). Bauer J. (2022): A Primer to Latent Profile and Latent Class Analysis. In: Goller, M.; Kyndt, E.; Paloniemi, S.; Damşa, C. (Hrsg.): Methods for Researching Professional Learning and Development. Challenges, Applications and Empirical Illustrations. Cham, 243–268. https://doi.org/10.1007/978-3-031-08518-5_11 BBSR – Bundesinstitut für Bau‑, Stadt- und Raumforschung (Hrsg.) (2012): Raumabgrenzungen und Raumtypen des BBSR. Bonn. = Analysen Bau.Stadt.Raum 6. Böltken, F.; Gatzweiler, H.-P.; Meyer, K. (2007): Das Kooperationsprojekt „Innerstädtische Raumbeobachtung“: Rückblick, Ausblick, Ergebnisse. Informationsgrundlagen für Stadtforschung und Stadtentwicklungspolitik. In: BBR – Bundesamt für Bauwesen und Raumordnung (Hrsg.): Innerstädtische Raumbeobachtung: Methoden und Analysen. Bonn, 7–22. = Berichte des BBR 25. Broberg, A.; Salminen, S.; Kyttä, M. (2013): Physical Environmental Characteristics Promoting Independent and Active Transport to Children’s Meaningful Places. In: Applied Geography 38, 43–52. https://doi.org/10.1016/j.apgeog.2012.11.014 Cao, X.; Mokhtarian, P. L.; Handy, S. L. (2009): Examining the Impacts of Residential Self-Selection on Travel Behaviour: A Focus on Empirical Findings. In: Transport Reviews 29, 3, 359–395. https://doi.org/10.1080/01441640802539195 Chen, C.-Y.; Koch, F.; Reicher, C. (2024): Developing a Two-Level Machine-Learning Approach for Classifying Urban Form for an East Asian Mega-City. In: Environment and Planning B: Urban Analytics and City Science 51, 4, 854–869. https://doi.org/10.1177/23998083231204606 D’Antonio, O. (2017): Stadt, Land, Partei – neue Asymmetrien im Parteienwettbewerb? In: Bukow, S.; Jun, U. (Hrsg.): Parteien unter Wettbewerbsdruck. Wiesbaden, 123–150. https://doi.org/10.1007/978-3-658-16600-7_6 Destatis (2025): Fortschreibung Wohngebäude- und Wohnungsbestand. Wohngebäude, Wohnungen, Wohnfläche: Bundesländer, Stichtag, Anzahl der Wohnungen. Tabelle 31231-0014. https://www-genesis.destatis.de/datenbank/online/statistic/31231/table/31231-0014 (07.02.2025). Fleischmann, M.; Arribas-Bel, D. (2022): Geographical Characterisation of British Urban Form and Function Using the Spatial Signatures Framework. In: Scientific Data 9, 546. https://doi.org/10.1038/s41597-022-01640-8 Goodchild, M. F. (2007): Citizens as Sensors: The World of Volunteered Geography. In: GeoJournal 69, 4, 211–221. https://doi.org/10.1007/s10708-007-9111-y Haffert, L.; Mitteregger, R. (2023): Cohorts and Neighbors: Urban-Rural Conflict Along the Age Gradient. In: Electoral Studies 86, 102705. https://doi.org/10.1016/j.electstud.2023.102705 Heywood, I.; Cornelius, S.; Carver, S. (2011): An Introduction to Geographical Information Systems. Harlow. Hölzel, D. J. (2022): Aktionsräume als Gegenstand interdisziplinärer und internationaler Forschung. In: Raumforschung und Raumordnung | Spatial Research and Planning 80, 2, 168–185. https://doi.org/10.14512/rur.101 Hoelzel, D. J. (2025): GRET – A Typology of Residential Environments in Germany. Dataset. Zenodo. https://doi.org/10.5281/zenodo.14168168 Küpper, P. (2016): Abgrenzung und Typisierung ländlicher Räume. Braunschweig. = Thünen Working Paper 68. Kwan, M.-P. (2012): The Uncertain Geographic Context Problem. In: Annals of the Association of American Geographers 102, 5, 958–968. https://doi.org/10.1080/00045608.2012.687349 Li, N.; Quan, S. J. (2023): Identifying Urban Form Typologies in Seoul Using a New Gaussian Mixture Model-Based Clustering Framework. In: Environment and Planning B: Urban Analytics and City Science 50, 9, 2342–2358. https://doi.org/10.1177/23998083231151688 Lin, J.-S.; Chan, F. Y.; Leung, J.; Yu, B.; Lu, Z.-H.; Woo, J.; Kwok, T.; Lau, K.K. (2020): Longitudinal Association of Built Environment Pattern with Physical Activity in a Community-Based Cohort of Elderly Hong Kong Chinese: A Latent Profile Analysis. In: International Journal of Environmental Research and Public Health 17, 12, 4275. https://doi.org/10.3390/ijerph17124275 Masyn, K. E. (2013): Latent Class Analysis and Finite Mixture Modeling. In: Little, T.D. (Hrsg.): The Oxford Handbook of Quantitative Methods. Volume 2: Statistical Analysis. Oxford, 551–611. https://doi.org/10.1093/oxfordhb/9780199934898.013.0025 McDonald, K.; Hearst, M.; Farbakhsh, K.; Patnode, C.; Forsyth, A.; Sirard, J.; Lytle, L. (2012): Adolescent Physical Activity and the Built Environment. A Latent Class Analysis Approach. In: Health and Place 18, 2, 191–198. https://doi.org/10.1016/j.healthplace.2011.09.004 Milbert, A. (2015): Raumabgrenzungen – Methodik und Entwicklung der BBSR-Typen. In: Meinel, G.; Schumacher, U.; Behnisch, M.; Krüger, T. (Hrsg.): Flächennutzungsmonitoring VII. Boden – Flächenmanagement – Analysen und Szenarien. Berlin, 173–179. = IÖR-Schriften 67. Milbert, A. (2020): Stadt-Umland-Definitionen in der Raumbeobachtung. In: Stadtforschung und Statistik 33, 1, 2–11. Müller, N.; Hecht, R.; Buchholz, S. (2017): Bebauungsstrukturklassifikation NRW – Grundlage für Klimamodellsimulationen. In: Meinel, G.; Schumacher, U.; Schwarz, S.; Richter, B. (Hrsg.): Flächennutzungsmonitoring IX. Nachhaltigkeit der Siedlungs- und Verkehrsentwicklung? Berlin, 81–91. = IÖR-Schriften 73. Nash, S.; Mitra, R. (2019): University Students‘ Transportation Patterns, and the Role of Neighbourhood Types and Attitudes. In: Journal of Transport Geography 76, 200–211. https://doi.org/10.1016/j.jtrangeo.2019.03.013 Openshaw, S. (1984): The Modifiable Areal Unit Problem. Norwich. = Concepts and Techniques in Modern Geography 38. Ralph, K.; Turley Voulgaris, C.; Taylor, B. D.; Blumenberg, E.; Brown, A. E. (2016): Millennials, Built Form, and Travel Insights from a Nationwide Typology of U.S. Neighborhoods. In: Journal of Transport Geography 57, 218–226. https://doi.org/10.1016/j.jtrangeo.2016.10.007 Richter, S.; John, S. (2022): Stadt, Land, Wahlverhalten. Die politische Geographie der Bundestagswahl 2021. Berlin. = böll.brief Demokratie & Gesellschaft #32. Rosenberg, J. M.; Beymer, P. N.; Anderson, D. J.; van Lissa, C. J.; Schmidt, J. A. (2018): tidyLPA: An R Package to Easily Carry Out Latent Profile Analysis (LPA) Using Open-Source or Commercial Software. In: Journal of Open Source Software 3, 30, 978. https://doi.org/10.21105/joss.00978 Scheiner, J. (2006): Wohnen und Aktionsraum: Welche Rolle spielen Lebensstil, Lebenslage und Raumstruktur? In: Geographische Zeitschrift 94, 1, 43–62. Spurk, D.; Hirschi, A.; Wang, M.; Valero, D.; Kauffeld, S. (2020): Latent Profile Analysis: A Review and “How to” Guide of Its Application within Vocational Behavior Research. In: Journal of Vocational Behavior 120, 103445. https://doi.org/10.1016/j.jvb.2020.103445 Stadt Aachen (2022): Open Data Portal. Stimmbezirke. https://offenedaten.aachen.de/dataset/stimmbezirke-stadt-aachen (13.09.2024). Stroppe, A.-K.; Jungmann, N. (2022): Stadt, Land, Wahl: Welchen Einfluss hat der Wohnort auf die Wahlentscheidung bei der Bundestagswahl 2021? In: easy_social_sciences 67, 49–60. https://doi.org/10.15464/easy.2022.07 Sui, D. Z. (1992): A Fuzzy GIS Modeling Approach for Urban Land Evaluation. In: Computers, Environment and Urban Systems 16, 2, 101–115. https://doi.org/10.1016/0198-9715(92)90022-J Taubenböck, H.; Droin, A.; Standfuß, I.; Dosch, F.; Sander, N.; Milbert, A.; Eichfuss, S.; Wurm, M. (2022): To Be, or Not to Be ’Urban‘? A Multi-Modal Method for the Differentiated Measurement of the Degree of Urbanization. In: Computers, Environment and Urban Systems 95, 101830. https://doi.org/10.1016/j.compenvurbsys.2022.101830 Zewdie, H. Y.; Robinson, J. R.; Adams, M. A.; Hajat, A.; Hirsch, J. A.; Saelens, B. E.; Mooney, S. J. (2024): A Tale of Many Neighborhoods: Latent Profile Analysis to Derive a National Neighborhood Typology for the US. In: Health and Place 86, 103209. https://doi.org/10.1016/j.healthplace.2024.103209 Downloads PDF (German) HTML (German) XML (German) Published Issue publication date 2025-06-30 (version 2)Published online first 2025-06-17 (version 1) Versions 2025-06-30 (2) 2025-06-17 (1) Issue Vol. 83 No. 3 (2025) Section Research Article License Copyright (c) 2025 David J. Hölzel This work is licensed under a Creative Commons Attribution 4.0 International License. Articles in Raumforschung und Raumordnung – Spatial Research and Planning are published under a Creative Commons license. From Vol. 79 No. 2 (2021), the license applied is CC BY 4.0. From Vol. 77 No. 1 to Vol. 79 No.1, articles were published under a CC BY-SA license. Earlier volumes have been re-published by oekom 2022 under the Creative Commons Attribution 4.0 International License CC BY 4.0. How to Cite 1.Hölzel DJ. A Settlement-Structural Typology of Residential Environments for North Rhine-Westphalia, Germany. Methodology, Characterisation and Application. RuR [Internet]. 2025 Jun. 30 [cited 2025 Jul. 7];83(3):151-7. Available from: https://rur.oekom.de/index.php/rur/article/view/3076 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Share
A new Issue has been published June 30, 2025 A new issue of the Open-Access-Journal "Raumforschung und Raumordnung | Spatial Research and Planning" has been published. Volume 83 No. 3 (2025) is now available on our website.
A new Issue has been published April 30, 2025 A new issue of the Open-Access-Journal "Raumforschung und Raumordnung | Spatial Research and Planning" has been published. Volume 83 No. 2 (2025) is now available on our website.
Acknowledgement to our reviewers 2024 March 6, 2025 The editors would like to thank all reviewers who have been reviewing articles in 2024.